## Geocronología Absolura

- Permite darle valor numérico a las escalas estratigráficas contruidas con la bioestratigrafía
- Basada en el decaimiento radocativo de algunos elementos (U, K, C, Rb, Re...)

(a) Alpha decay


Atomic mass unchanged; atomic number increases by 1
(b) Beta decay


Atomic mass unchanged; atomic number
decreases by 1

Radioactive decay occurs via three decay processes:

## Alpha Decay

## Beta Emission

## Electron Capture.

Daughter nucleus has atomic number 2 less and mass number 4 less than parent nucleus

A Alpha decay-2 neutrons and 2 protons lost

## Alpha decay

particle has 2 neutrons and 2 protons $\mathbf{U}^{238} \longrightarrow \mathbf{T h}^{234}$
92 protons 90 protons
Beta decay ( $\boldsymbol{n}^{0}=\boldsymbol{p}^{+}+e^{-}$)


B Beta decay-Neutron loses an electron and becomes a proton

- Electron

Daughter nucleus has atomic number 1 lower than parent nucleus. No change in mass number

C Electron capture-A proton captures an electron and becomes a neutron
breakdown of neutron into an electron and a proton and loss of the electron to leave a proton (result is gain of one proton)

$$
\begin{gathered}
\mathrm{K}^{40} \longrightarrow \mathrm{Ca}^{40} \\
19 \text { protons } 20 \text { protons } \\
\text { electron capture } \\
\left(e^{-}+p^{+}=n^{0}\right)
\end{gathered}
$$

capture of an electron by a proton and change of proton to neutron (result is loss of proton)

$$
\mathbf{K}^{40} \longrightarrow \mathbf{A r}^{40}
$$

19 protons 18 protons

## Isotopic Dating

- Radioactive elements (parents) decay to stable, non-radioactive elements (daughters)
- The rate at which this decay occurs is constant and known
- If we know the rate of decay and the amount present of parent and daughter we can calculate how long this reaction has been occurring.



## Half Lives

The amount of time required for half the remaining material to decay


$D_{0}$
$\lambda$ :constante de decaimiento radioactivo

## Five Padioactive Isotope Pairs

| Isotopes |  | Half-Life (Years) | Effective Dating Range of Parent (Years) | Minerals and Rocks That Can Be Dated |
| :---: | :---: | :---: | :---: | :---: |
| Parent D | ghter |  |  |  |
| Uranium238 | Lead 206 | 4.5 billion | 10 million to 4.6 billion | Zircon Uraninite |
| Uranium235 | Lead 207 | 704 million |  |  |
| Thorium 232 | Lead 208 | 14 billion | 48.8 billion | Muscovite Biotite |
| Rubidium87 | Strontium87 | 4.6 billion | 10 million to 4.6 billion | Potassiumfeldspar Whole metamorphic or igneous rock |
| Potassium 40 | Argon 40 | 1.3 billion | $\begin{aligned} & 100,000 \text { to } \\ & 4.6 \text { billion } \end{aligned}$ | Glauconite Muscovite Biotite Homblende Whole volcanic rock |

## Isócronas



| Number of Parent Isotopes |
| :---: |
| Number of Non-Daughter Isotopes |

## Rb/Sr Isochron Method



## Microfotografía. Cristal de Botita visto con Luz Polaridada




Zircon Laser
Ablation Pit

## SHRIMP Mass <br> Spectrometer



## U/Pb Zircon

## 304 Ma

413 Ma

## $100 \mu \mathrm{~m}$




50 microns



01JH54-77



Source: Cavosie et al., 2004 Precam. Res.; Valley et al., 2006 Science
Jack Hills Zircons, Australia

## Age distribution of Jack Hills detrital zircons




## A typical rock exposure in the Godthaabsfjord region, Greenland



- ~ 4.4. Ga oldest minerals (zircons, Jack Hills, Australia)
- 3.8-4.1 Ga Tonalite-Trondhjemite gneiss complexes (North America, China, Greenland, Australia)
- 3.75-3.7 Ga Isua Greenstone belt + 3.65 Amitsoq Gneiss
- >3.5-3.0 Ga Australia, South Africa:

Pilbara and Barberton Greenstone Belts


## Ocean Earth

$\sim 3.4 \mathrm{Ga}$
transition
$-3.3 \mathrm{Ga}$
continents


## EDAD de la Tierra?

NASA/Cassini, Sept 2006
"Pilares de la Creación"

Nebulosa del
Aguila


Protoplanetary Disks in the Orion Nebula Hubble Space Telescope •WFPC2
-A Protoplanetary disk (or Proplya) is a rotating circumstellar disk of dense gas surrounding a young newly formed star, a T Tauri star or Herbig star
-Protostars typically form from molecular clouds consisting primarily of molecular hydrogen. When a portion of a molecular cloud reaches a critical size, mass, or density, it begins to collapse under its own gravity




Scanning electron microscope image of an interplanetary dust particle that has roughly en:chondritic elemental composition and is highly rough (chondritic porous: "CP")



## Differentiated Meteorites

-Irons and non-chondrule-bearing stones called Achondrites.
-Achondrites are similar to igneous rocks

METEORIC IRON:
kamacite and taenite crystals coexisting in the Fe-Ni alloy are the cause of the "Widmanstatten figures". Analogous terrestrial rocks are not known, but are possible.
(Ward's Catalogue, Rochester NY)

## Primitive material in the solar system: Meteorites

A-Dense nickel-iron core (produces IRON meteorites)


Stony-Iron


Crater de Imilac, Antofagasta


-A chondrule is a spherical, millimetre sized, silicate inclusion found in a type ofmeteorite called embedded in fine-grained interplanetary dust, may form up to $80 \%$ of the meteorite of chodrite volume
-Made of the minerals olivine and pyroxene (with perhaps smaller amounts of glass, iron and nickel present), chondrules are the oldest objects in the Solar System. Their spherical nature suggests that they were once molten, and it is thought that they solidified very quickly - indicating that the heat source was a


Meteoritos:

Edad de
Formación del Sistema Solar



RELATVE GEOLOGICAL TIME SCALE

## NOT TOSCALE

| TERTIARY |  |  |
| :---: | :---: | :---: |
|  | Maastrichtian |  |
|  | Campanian | Baculites jenseni Baculites reesidei Baculites cuneatus ... more ammonite zones ... |
|  | Santonian ...more Cretaceo | stages |

## Relative And Absolute Dates Combined






Radiocarbon is first produced in the atmosphere by collisions of neutrons with nitrogen atoms (Nitrogen has 7 protons and 7 neutrons in its nucleus).

The neutron will knock out a proton from the nitrogen atom's nucleus, replacing it with a neutron. The proton number is reduced by 1 (it is now 6), but the mass number remains the same (14).

The atom will now have 6 protons and 8 neutrons in its nucleus and form the isotope ${ }^{14} \mathrm{C}$ (radiocarbon). C-14 is radioactive and decays with a half-life of 5730 years back to Nitrogen ( ${ }^{14} \mathrm{~N}$ ).

The ${ }^{14} \mathrm{C}$ atoms rapidly form $\mathrm{CO}_{2}$ gas and then exchanged between the atmosphere, hydrosphere and biosphere. As long as the organism is alive it will continually exchange carbon within its reservoir and remain in equilibrium as new carbon is replenished. After the organism dies the ${ }^{14} \mathrm{C}$ clock is set as the ratio of ${ }^{14} \mathrm{C} /$ stable carbon $\left({ }^{12} \mathrm{C}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ decreases as ${ }^{14} \mathrm{C}$ decays to ${ }^{14} \mathrm{~N}$.

## Radiocarbon Decay Activity

${ }^{14} \mathrm{C}$ decays to ${ }^{14} \mathrm{~N}$ as it emits a beta ( $\beta$ ) particle. The decay activity (Beta emission rate) will decrease by $50 \%$ every halflife ( 5730 years). Radiocarbon ages can be determined for organic matter by counting $\beta$-emissions.


"Temperaturas de Cierre" para distintos métodos de datación de minerales

## Apatite Fission Track Analysis (AFTA ${ }^{(\mathbb{B}}$ )



